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LE’ITER TO THE EDITOR 

Kinetic gelation with and without initiators: 
a two-dimensional Monte Carlo study 
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t Theoretical Physics Institute, St Francis Xavier University, Antigonish, Nova Scotia 
B2G 1 C 0 ,  Canada 
$ Institut fur Theoretische Physik, Universitat, 5000 Koln 41, West Germany 

Received 4 January 1983 

Abstract. We simulate a mixture of bifunctional and tetrafunctional molecules which may 
form bonds, on a triangalar lattice, both with and without the help of free radicals. The 
model of Herrmann et a1 and normal bond percolation are two special limits of our model. 
We determine the gel point, the fraction of matter in the infinite network or gel, and the 
weight-average degree of polymerisation, as a function of time. For radical-initiated 
gelation, the observed cluster distribution confirms the conclusion of Herrmann et al, that 
this model is different from random restricted-valence percolation. However, the gel point 
is found to decrease with increasing concentration of bifunctional molecules, quite unlike 
the behaviour observed in three dimensions. 

Flory’s theory of gelation (Flory 1953) is based on the approximation that sites on a 
Bethe lattice are connected by randomly formed bonds; this theory can be regarded 
as the first percolation theory. If instead the original molecules are placed on a 
periodic lattice, the lattice structure automatically takes into account the excluded 
volume effects and also allows for the formation of loops over arbitrary distances. If 
the permanent bonds between the lattice sites are formed in a random manner as in 
Flory’s theory, then we arrive at bond percolation as a model for the gelation process. 
The advantages and disadvantages of this well studied model have been recently 
reviewed by Stauffer et a1 (1982) with particular emphasis on critical phenomena. 

Real gelation, however, is not a random process; instead, bonds are formed as a 
result of chemical reactions which may depend on the previous history of the system. 
On a lattice this process may be simulated through the use of initiators or free radicals 
which act essentially as catalysts and whose permitted paths through the lattice lead 
to trails of permanently formed bonds. This resulting branched network of permanent 
bonds is then a history of the past movement of initiators. 

The model (Manneville and de Seze 1981) has been discussed extensively by 
Herrmann et a1 (1982, 1983) with respect to computational resG ts near thz gel point 
and by Bansil et a1 (1983) with respect to its chemical justification and limitation. All 
the previously published work was three-dimensional and also assumed that the growth 
of the clusters comes exclusively from radical movements, i.e. by the jump of a free 
radical from one lattice site to a neighbouring site. The present work is two- 
dimensional; also, to describe more realistically materials like polyacrylamide we now 
allow our permanent bonds to be formed even without the help of initiators. During 
the time one radical attempts to jump to a neighbouring site, n - 1 randomly selected 

@ 1983 The Institute of Physics L117 



L118 Letter to the Editor 

lattice sites each attempt to form one bond with a neighbour independent of the 
presence of an initiator. This progress without radicals is much slower; but since there 
are only few radicals in the system, the overall number of bonds formed without 
initiators can be appreciable. For example, if n = 10, and if, as in our case, only one 
per cent of the lattice sites carry a radical, then initially about nine out of ten bonds 
are formed by our newly introduced reaction without radicals. Note, however, that 
a given lattice site with a radical will only form a bond without the transfer of the 
radical in one out of ten cases. 

Figure 1 shows, at a concentration of 40% tetrafunctional monomers (and thus 
60% bifunctional units) how the number of permanent bonds increases with time. 
Our time unit is one jump attempt per radical; thus for large n, reactions proceed 
very quickly. The limit n + co corresponds to random restricted-valence percolation 
since now the radicals have become irrelevant and every bond can be formed with the 
same probability p .  The limit n = 1, of course, corresponds to the case discussed by 
Herrmann et a1 (1982, 1983), B a n d  et a1 (1983) and Manneville and de Seze (1981), 
when reactions proceed exclusively through jumping of radicals. In general we denote 
by p the conversion factor, i.e. the number of permanent bonds formed, divided by 
the number 3L2 or permissible bonds on the lattice. 

A tetrafunctional unit can enter at most four bonds with its six nearest neighbours, 
a bifunctional unit at most two. It is possible in our model for two nearest-neighbour 
sites to be connected by multiple bonds. A small fraction (one per cent throughout 
this work) of tetrafunctional and bifunctional units are marked randomly by radicals, 
which are essentially unpaired electrons able to break up a carbon double bond (Bansil 
et a1 1983). Initially the lattice is free of all bonds; an initiator is then selected 

t 

Figure 1. Variation of conversion factor p (fraction of permanently formed bonds) against 
time t ;  our time unit is one jump attempt per radical. The number n on each curve gives 
the number of bond formation attempts made per unit time; e.g. for n = 2 one tries to 
form one bond initiated by a free radical followed by one bond without such help. The 
initial number of free radicals is one per cent of the total number of lattice sites (also in 
the later figures). The concentration of bifunctional units is 6O%, corresponding to 40% 
tetrafunctional units; for fewer bifunctional molecules less time is needed to reach the 
same p. All curves are based on ten runs in a 360 x 360 lattice and took 4 to 8 minutes 
on a CDC Cyber 76 computer. 
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randomly, and the monomer at this site and one at a randomly selected nearest- 
neighbour site are checked to see if they are saturated. If this is not the case, a bond 
is formed permanently between the two sites, and the initiator is moved to the new 
site. If our new parameter n is larger than unity, this step is followed by a random 
selection of n - 1 lattice sites (independent of whether they carry a radical or not) 
each of which tries to form a bond with one of its neighbours; in this case no radical 
is transferred if a bond is formed. This whole procedure is repeated until all initiators 
are either trapped or annihilated. (Initiators are annihilated if two happen to be at 
the same site, and trapped if it is impossible for the initiator to move away as a result 
of bond saturation in its environment.) 

Besides time t and conversion factor p, we measure in our computer experiment 
the gel fraction G, which is the number of sites belonging to the largest macromolecule 
or bond cluster divided by the system size L2,  and the ‘susceptibility’ ,y = C s2n,, 
where n, is the number of macromolecules (per lattice site) containing s sites each; 
the sum excludes the largest cluster. (The unnormalised cluster number L2ns is denoted 
by N,.) Here L is the linear dimension of the triangular lattice in units of the 
nearest-neighbour spacing; thus the lattice contains L z  sites connected by 3L2 bonds. 
We consider L = 100, 200 and 360 with periodic boundary conditions and note that 
the results for L = 200 and 360 are almost identical. 

The cluster size distribution N, in figure 2 shows for n = 1 (bonds formed exlusively 
through radicals) a second maximum as a function of s, besides the trivial maximum 
at s = 1 corresponding to unattached monomers. The second maximum shifts with 
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Figure 2. ( a )  Log-log plot of cluster numbers N ,  versus cluster size s for p = 0.05 at a 
concentration of 60% bifunctional monomers in a 360 x 360 lattice (ten runs are added 
up). The parameter n is defined in figure 1 ;  for n -D CO we expect the usual random 
restricted-valence percolation results, indicated here by a broken line. ( b )  N ,  against s 
for various values of p ;  these results were obtained from ten runs on a 360 x 360 lattice 
at a concentration of 20% bifunctional monomers. 
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time to larger sizes s, and also shrinks with time. At the gel point it is shifted to such 
large s and shrunk so strongly that it is no longer clearly visible. In the usual random 
percolation process no such second maximum in N, as function of s at fixed p appears 
(see for example the tables of Flammang (1977)); but such maxima are common to 
phase separation processes if large droplets grow due to condensation and if there is 
negligible coagulation. Thus the appearance of this second maximum is a clear 
indication that this kinetic gelation process differs from the essentially static percolation 
model, in agreement with Herrmann et a1 (1982). On the other hand, large n in our 
model corresponds to random percolation; and indeed for n = 2 the second maximum 
is much less pronounced, as figure 2 shows, whereas for n = 10 it has vanished 
completely . 

As figure 1 already showed, it is difficult in this process for n > 1 to reach the gel 
point. Due to the rapid formation of bonds without the need for initiators, the radicals 
become trapped before the gel point is reached. From then on the process resembles 
random percolation, and is therefore not continued in our simulation. Thus from now 
on we restrict ourselves to the case n = 1, where bonds are formed exclusively through 
radicals. 

Figure 3 shows the gel fraction and ‘susceptibility’ and extends again up to the 
time when all radicals in the lattice are trapped or annihilated. We determine the gel 
point from the maximum in x; this determination is consistent with that from the gel 
fraction. Finally, figure 4 shows our phase diagram: gel point against ratio of tetrafunc- 
tional units to total number of lattice sites. 

We point out the differences between this phase diagram and that of Herrmann 
et a1 (1983) for 3~ simple cubic lattices. In both cases the coordination number is 
six, but the 3~ system shows an increase in the gel point p c  with increasing mole 
fraction of bifunctional units; for the purely tetrafunctional system p c  is about 0.074. 
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Figure 3. Gel fraction and ‘susceptibility’ (second moment of cluster size distribution 
excluding the largest cluster) for n = 1, i.e. bonds are formed exlusively through radicals. 
The statistical error is of the same order as the size of the data points. 
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Figure 4. Gel point pc, for n = 1, as function of concentration of tetrafunctional units, in 
300 x 300 lattices. A typical error bar is shown. 

In our 2~ system we see a decrease in p c  with increasing concentration of bifunctional 
monomers, with p c  about 0.2 for a purely tetrafunctional system. This strong 
dimensionality effect is also observed by the formation of an infinite cluster for high 
concentrations (about 90°/0) of bifunctionals in 3 ~ ,  whilst we found it impossible to 
form infinite 2~ clusters for concentration of bifunctionals larger than about 4. 

We summarise our result by stating that the kinetic model of Herrmann et a1 can 
also be simulated in 2~ , with results on the whole similar to 3 ~ .  Other 2~ work is 
presently in progress (Rushton et a1 1983, Morgan et a1 1983). We also generalised 
the model to incorporate reactions without radicals; the system then becomes more 
similar to random restricted-valence percolation. Not surprisingly, our 2D gel points 
are higher than the 3~ ones. The gel point in 2~ varies in the opposite direction to 
the 3~ case if the ratio of bifunctional to tetrafunctional units is changed. 

After this feasibility study, it remains to be seen what the critical behaviour of 
this system is, and how its behaviour changes if fixed (Morgan and Landau 1983) and 
mobile ( B a d  et a1 1983) solvent molecules are included in the simulation. It would 
be nice if the model could be simulated on a continuum without a lattice (Gawlinski 
and Redner (1983) with earlier literature on continuum percolation). At least in 2 ~ ,  
in the case of reactions occurring both with and without radicals, modifications to the 
model are necessary if one wants to reach the gel point with untrapped radicals. 
Further progress in the simulation of 2~ gelation could lead to a better theory of 
antibody-antigen reactions on the surface of lymphocytes in higher vertebrates 
(Perelson 197 8). 

We thank H J Herrmann for invaluable help, G C Berry for suggesting the inclusion 
of slow reactions without radicals, and D Hunter and D A Pink for informative 
discussions. DS wishes to thank St Francis Xavier University for its hospitality during 
the initial stages of this work. This research was supported in part by the National 
Science and Engineering Research Council of Canada and the West German Science 
Foundation through Sonderforschungsbereich 125. 
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